Detection of fatigue microdamage in whole rat femora using contrast-enhanced micro-computed tomography.
نویسندگان
چکیده
Microdamage in bone tissue is typically studied using destructive, two-dimensional histological techniques. Contrast-enhanced micro-computed tomography (micro-CT) was recently demonstrated to enable non-destructive, three-dimensional (3-D) detection of microdamage in machined cortical and trabecular bone specimens in vitro. However, the accumulation of microdamage in whole bones is influenced by variations in the magnitude and mode of loading due to the complex whole bone morphology. Therefore, the objective of this study was to detect the presence, spatial location, and accumulation of fatigue microdamage in whole rat femora in vitro using micro-CT with a BaSO(4) contrast agent. Microdamage was detected and observed to accumulate at specific spatial locations within the cortex of femora loaded in cyclic three-point bending to a 5% or 10% reduction in secant modulus. The ratio of the segmented BaSO(4) stain volume (SV) to the total volume (TV) of cortical bone was adopted as a measure of damage. The amount of microdamage measured by micro-CT (SV/TV) was significantly greater for both loaded groups compared to the control group (p<0.05), but the difference between loaded groups was not statistically significant. At least one distinct region of microdamage, as indicated by the segmented SV, was observed in 85% of loaded specimens. A specimen-specific finite element model confirmed elevated tensile principal strains localized in regions of tissue corresponding to the accumulated microdamage. These regions were not always located where one might expect a priori based upon Euler-Bernoulli beam theory, demonstrating the utility of contrast-enhanced micro-CT for non-destructive, 3-D detection of fatigue microdamage in whole bones in vitro.
منابع مشابه
Detection of Fatigue Microdamage in Human Cortical Bone Using Micro-Computed Tomography
INTRODUCTION: Conventional techniques used to image microdamage in cortical bone require the preparation of many histologic sections which is inherently invasive, destructive, two-dimensional, and tedious [1]. These limitations inhibit evaluation of the effects of microdamage on whole bone strength and prohibit detection of microdamage in vivo. Therefore, micro-computed tomography (micro-CT) ha...
متن کاملContrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
Conventional methods used to image and quantify microdamage accumulation in bone are limited to histological sections, which are inherently invasive, destructive, two-dimensional, and tedious. These limitations inhibit investigation of microdamage accumulation with respect to volumetric spatial variation in mechanical loading, bone mineral density, and microarchitecture. Therefore, the objectiv...
متن کاملMicro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.
Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO(4)) contrast agent. ...
متن کاملContrast Agents for Micro-Computed Tomography of Microdamage in Bone
Accumulation of microdamage during fatigue can lead to increased fracture susceptibilityin bone. Current techniques for imaging microdamage in bone are inherently destructiveand two-dimensional. Therefore, the objective of this study was to image the accumulationof fatigue microdamage in cortical bone using micro-computed tomography (micro-CT)with a barium sulfate (BaSO4) contra...
متن کاملFatigue microcracks that initiate fracture are located near elevated intracortical porosity but not elevated mineralization.
In vivo microcracks in cortical bone are typically observed within more highly mineralized interstitial tissue, but postmortem investigations are inherently limited to cracks that did not lead to fracture which may be misleading with respect to understanding fracture mechanisms. We hypothesized that the one fatigue microcrack which initiates fracture is located spatially adjacent to elevated in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 44 13 شماره
صفحات -
تاریخ انتشار 2011